

GmshModel

Gmsh [https://gmsh.info/] is a powerful tool for the generation of meshes for
numerical simulations but the built-in scripting language makes the meshing
procedure and especially an automatization really hard. Luckily, Gmsh provides
a Python-API with which all the capabilites of Gmsh can be used within Python.

GmshModel is intended to be an extendable tool that facilitates the mesh generation
by interfacing the Gmsh-Python-API: it provides a basic framework for an automated
mesh generation for self-defined model types and, with that, allows to automate the
generation of complex models as, e.g., representative volume elements. To this
end, GmshModel divides the mesh modeling procedure into basic steps:

	Setting up a geometry using basic geometric entities and boolean operations.

	Adding the geometric objects to Gmsh, performing the boolean operations and defining physical groups.

	Creating a mesh with user-defined refinement fields.

	Saving the mesh to various output formats.

	Visualizing the resulting mesh.

So far, GmshModel is especially designed to automate the generation of representative
volume elements that contain multiple inclusion objects. An extension of gmshModel
is however possible by adding new geometric objects and model types to the framework.

It is not the purpose of GmshModel to replace the Gmsh scripting language or other
great tools such as PyGmsh [https://github.com/nschloe/pygmsh] for the generation
of meshes. GmshModel rather tries to function as an interface to Gmsh to facilitate
the automation of recurring, complex meshing tasks that require the full functionality
of Gmsh in a nice and easy to use programming environment such as Python.

Getting Started

To get all information on how to install gmshModel, see Installation.
If you are using pip, simply use the following command to install gmshModel
and its features:

$ python3 -m pip install gmshModel

For conda users, the installation command is straightforward, too:

$ conda install -c conda-forge gmshModel

[image: 200SpheresGeo]
[image: 200SpheresMesh]
To check out what you can do with gmshModel and generate the above periodic mesh
with 200 randomly placed spherical inclusions of radius 1 in a [20x20x20]
domain, simply use the following code:

import required model type
from gmshModel.Model import RandomInclusionRVE as RVE

initialize new RVE
myRVE=RVE(size=[20,20,20], inclusionType="Sphere", inclusionSets=[1, 200])

create Gmsh model
myRVE.createGmshModel()

generate mesh
myRVE.createMesh()

save resulting mesh to vtk
myRVE.saveMesh("myRVE.vtk")

visualize result
myRVE.visualizeMesh()

finalize Gmsh-Python-API
myRVE.close()

Go to Examples to check out more examples of meshes generated using
gmshModel.

Documentation

Here, you can find out how gmshModel works, which classes and methods are involved
and how you can use them to generate your own model:

	Geometry gives information on available geometric objects

	Model explains all available models

	Visualization gives information on the visualization capabilities of gmshModel

	MeshExport comments on additional mesh output formats (extending meshio)

Index

	Index

Installation

As most Python packages, gmshModel can be installed in more than one way. Here,
the two common ways of the package installation will be pointed out: the
installation via the Conda [https://anaconda.org/] and PyPi [https://pypi.org/]
package managers.

Dependencies

GmshModel is an interface tool and makes use of many great contributions of other
people. To experience the full functionality of Gmsh model, the following (non-standard)
software packages are required:

	a dynamically built Gmsh [https://gitlab.onelab.info/gmsh/gmsh/-/wikis/Gmsh-compilation/] to use the Gmsh-Python-API

	meshio [https://github.com/nschloe/meshio/] for the conversion of meshes to various output formats

	pyvista [https://www.pyvista.org/] for the visualization of meshes

	pythonocc-core [https://github.com/tpaviot/pythonocc-core/] for the visualization of the model geometry

Using the supported PyPi and Conda package managers, all dependencies that
are necessary to run gmshModel will be automatically installed. Since the pythonocc-core
package does not provide an installation for PyPi, the geometry visualization feature
will not be available for it.

Installation using Conda

The availability of gmshModel in the conda-forge channel [https://anaconda.org/conda-forge/gmshmodel]
allows a straightforward installation of the package using the following command:

$ conda install -c conda-forge gmshModel

Installation using PyPi

Since gmshModel is also available from the Python Package Index [https://pypi.org/project/gmshModel/],
PyPi users can simply install it using the following command:

$ python3 -m pip install gmshModel

If the package does not work after the installation due to an import error of
the Gmsh-Python-API, your system probably cannot find the file gmsh.py. In order
to fix this, a symbolic link from its installation location into the site-packages
directory of your Python installation can be created:

example for linux users:
$ ln -s <PATH TO GMSH>/lib/gmsh.py $HOME/.local/lib/<PYTHON VERSION>/site-packages/gmsh.py

If you also want to have a working geometry visualization, you can
compile pythonocc-core from source [https://github.com/tpaviot/pythonocc-core/blob/master/INSTALL.md/].

Using the visualization features

After the mesh generation, it is sometimes advantageous to have the possibility
to visualize the resulting mesh in order to check if it matches the own requirements.
In gmshModel, this can be accomplished by using the visualizeMesh() functionality
of the GenericModel: since all available model types inherit the methods of
GenericModel, the method is available for all models.

...

visualize the mesh of myModel
myModel.visualizeMesh()

...

The mesh visualization is based on the pyvista [https://github.com/pyvista/pyvista/]
library and uses its features. If the visualization method is called, the mesh
is written to a temporary .vtk-file which is then visualized with pyvista.
Within an active visualization window, several key-events allow for extended
features:

	x

	set view to y-z-plane

	y

	set view to z-x-plane

	z

	set view to x-y-plane

	q

	close visualization window

	m

	toggle visualization menu

	space

	confirm settings and re-render

	d

	restore default settings

Since the normal way of generating meshes in Gmsh involves the definition of
physical groups to, e.g., distinguish different materials, threshold sliders can
be used if the visualization menu is activated. They allow to enable or disable
different groups according to the defined physical groups in the gmshModel.
Additionally, an extraction box widget can be used to extract regions of the mesh
and have a closer look to them.

[image: basic visualization]
[image: visualization menu]

Examples

In the following examples, basic features of the mesh generation using GmshModel
are shown: the basic toolchain is described and meshes with different output
formats are exported.

	Random distribution of circular inclusions in a rectangular domain

	Random distribution of spherical inclusions in a box-shaped domain

	Random distribution of cylindrical inclusions in a box-shaped domain

	Simple cubic unit cell with spherical inclusions

	Body-centered cubic unit cell with circular inclusions

	Face-centered cubic unit cell with cylindrical inclusions

	Hexagonal unit cell with spherical inclusions

	Helical chain with circular inclusions

	Helical chain with spherical inclusions

Random distribution of circular inclusions in a rectangular domain

This example shows the generation of an RVE with randomly placed, circular
inclusions. The basic procedure of the model and mesh generation are pointed
out and the resulting mesh is visualized. For the example, only the standard
configuration is used. However, in order to show all available options - user
configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

Loading of the RandomInclusionRVE class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class RandomInclusionRVE
from gmshModel.Model import RandomInclusionRVE as RVE

Initialization of the RVE
In order to generate a mesh for RVEs with randomly placed inclusions, relevant
data have to be passed for the initialization of a new object instance. For
RVEs of the type under consideration, the following parameters are possible:
#
size: list/array (mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, L_z]
#
inclusionSets: list/array (mandatory)
array defining the relevant information (radius and amount) for the individual
groups of spherical inclusions to be placed
-> inclusionSets=[[r_1, n_1] [r_2, n_2], ..., [r_n, n_n]]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, O_z]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "inclusionSets": [[1, 8], [0.5, 10]], # place 8 inclusions with radius 1 and 10 inclusions with radius 0.5
 "inclusionType": "Circle", # define inclusionType as "Circle"
 "size": [10, 10, 10], # set RVE size to [10,10,10]
 "origin": [0, 0, 0], # set RVE origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testRVE=RandomInclusionRVE(**initParameters)

Gmsh model generation
After all parameters for the RVE are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For RVEs with randomly placed inclusions, only the placement
options can be changed by the user. To this end, the possible parameters are:
#
placementOptions: dict (optional)
user updates for the inclusion placement algorithm
#
modelingParameters={ # save all possible parameters in one dict to facilitate the method call
 "placementOptions": {"maxAttempts": 10000, # maximum number of attempts to place one inclusion
 "minRelDistBnd": 0.1, # minimum relative (to inclusion radius) distance to the domain boundaries
 "minRelDistInc": 0.1, # minimum relative (to inclusion radius) distance to other inclusions}
 }
}
testRVE.createGmshModel(**modelingParameters)

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testRVE.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
#
testRVE.saveMesh("randomInclusions2DCirlce.vtu")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
#
testRVE.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, thAPI has to be finalized. This
can be achieved by calling the close() method of the model
#
testRVE.close()

Result

If the mesh generation is successful, the result should look similar to the following:

[image: ../_images/RandomInclusions2DCircle.png]
Since the geometry involves a random placement of the circular inclusions, the mesh
will slightly vary for each run of the example. However, in the end there should always
be 18 circular inclusions with two different radii. The applied (default) refinement
options try to ensure that there are about 3 elements between close inclusions and around
18 elements per inclusion circumference.

Random distribution of spherical inclusions in a box-shaped domain

This example shows the generation of an RVE with randomly placed, spherical
inclusions. The basic procedure of the model and mesh generation are pointed
out and the resulting mesh is visualized. For the example, only the standard
configuration is used. However, in order to show the available options - all
user configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

Loading of the RandomInclusionRVE class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class RandomInclusionRVE
from ..src.typeRandomInclusionRVE import RandomInclusionRVE

Initialization of the RVE
In order to generate a mesh for RVEs with randomly placed inclusions, relevant
data have to be passed for the initialization of a new object instance. For
RVEs of the type under consideration, the following parameters are possible:
#
size: list/array (mandatory)
array defining the size of the RVE in the individual directions
size=[L_x, L_y, L_z]
#
inclusionSets: list/array (mandatory)
array defining the relevant information (radius and amount) for the individual
groups of spherical inclusions to be placed
inclusionSets=[[r_1, n_1] [r_2, n_2], ..., [r_n, n_n]]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
origin: list/array (optional)
array defining the origin of the RVE
origin=[O_x, O_y, O_z]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "inclusionSets": [1, 12], # place 12 inclusions with radius 1
 "inclusionType": "Sphere", # define inclusionType as "Sphere"
 "size": [6, 6, 6], # set RVE size to [6,6,6]
 "origin": [0, 0, 0], # set RVE origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testRVE=RandomInclusionRVE(**initParameters)

Gmsh model generation
After all parameters for the RVE are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For RVEs with randomly placed inclusions, only the placement
options can be changed by the user. To this end, the possible parameters are:
#
placementOptions: dict (optional)
user updates for the inclusion placement algorithm
modelingParameters={ # save all possible parameters in one dict to facilitate the method call
 "placementOptions": {"maxAttempts": 10000, # maximum number of attempts to place one inclusion
 "minRelDistBnd": 0.1, # minimum relative (to inclusion radius) distance to the domain boundaries
 "minRelDistInc": 0.1, # minimum relative (to inclusion radius) distance to other inclusions}
 }
}
testRVE.createGmshModel(**modelingParameters)

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testRVE.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
#
testRVE.saveMesh("randomInclusions3DSphere.feap")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
#
testRVE.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, thAPI has to be finalized. This
can be achieved by calling the close() method of the model
#
testRVE.close()

Result

If the mesh generation is successful, the result should look similar to the following:

[image: ../_images/RandomInclusions3DSphere.png]
Since the geometry involves a random placement of the spherical inclusions, the mesh
will slightly vary for each run of the example. However, in the end there should always
be 12 cylindrical inclusions that are periodically continued over all boundaries.
The applied (default) refinement options try to ensure that there are about 3 elements
between close inclusions and around 18 elements per inclusion circumference.

Random distribution of cylindrical inclusions in a box-shaped domain

This example shows the generation of an RVE with randomly placed, cylindrical
inclusions. The basic procedure of the model and mesh generation are pointed
out and the resulting mesh is visualized. For the example, only the standard
configuration is used. However, in order to show all available options - user
configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

Loading of the SimpleCubicCell class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class SimpleCubicCell
from gmshModel.Model import SimpleCubicCell as Cell

Initialization of the unit cell
In order to generate a mesh for simple cubic unit cells with spherical inclusions,
relevant data have to be passed for the initialization of a new object instance. For
unit cells of the type under consideration, the following parameters are possible:
#
size: list/array (mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, L_z]
#
inclusionSets: list/array (mandatory)
array defining the relevant information (radius and amount) for the individual
groups of spherical inclusions to be placed
-> inclusionSets=[[r_1, n_1] [r_2, n_2], ..., [r_n, n_n]]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
inclusionAxis: list/string (mandatory)
array defining the cylinder axis/direction
-> inclusionAxis=[A_x, A_y, A_z]
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, O_z]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "inclusionSets": [1, 13], # place 13 inclusions with radius 1
 "inclusionType": "Cylinder", # define inclusionType as "Cylinder"
 "inclusionAxis": [0, 0, 2.5], # define inclusionAxis direction
 "size": [10, 10, 2.5], # set RVE size to [10,10,2.5]
 "origin": [0, 0, 0], # set RVE origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testRVE=RandomInclusionRVE(**initParameters)

Gmsh model generation
After all parameters for the RVE are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For RVEs with randomly placed inclusions, only the placement
options can be changed by the user. To this end, the possible parameters are:
#
placementOptions: dict (optional)
user updates for the inclusion placement algorithm
#
modelingParameters={ # save all possible parameters in one dict to facilitate the method call
 "placementOptions": {"maxAttempts": 10000, # maximum number of attempts to place one inclusion
 "minRelDistBnd": 0.1, # minimum relative (to inclusion radius) distance to the domain boundaries
 "minRelDistInc": 0.1, # minimum relative (to inclusion radius) distance to other inclusions}
 }
}
testRVE.createGmshModel(**modelingParameters)

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
#
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testRVE.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
#
testRVE.saveMesh("randomInclusions3DCylinder.xdmf")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
#
testRVE.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, thAPI has to be finalized. This
can be achieved by calling the close() method of the model
#
testRVE.close()

Result

If the mesh generation is successful, the result should look similar to the following:

[image: ../_images/RandomInclusions3DCylinder.png]
Since the geometry involves a random placement of the cylindrical inclusions, the mesh
will slightly vary for each run of the example. However, in the end there should always
be 13 cylindrical inclusions that are periodically continued over all boundaries.
The applied (default) refinement options try to ensure that there are about 3 elements
between close inclusions and around 18 elements per inclusion circumference.

Simple cubic unit cell with spherical inclusions

This example shows the generation of a unit cell with a simple cubic distribution
of spherical inclusions. The basic procedures of the model and mesh generation
are pointed out and the resulting mesh is visualized. For the example, only the
standard configuration is used. However, in order to show all available options -
user configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

Loading of the SimpleCubicUnitCell class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class SimpleCubicCell
from gmshModel.Model import SimpleCubicCell

Initialization of the unit cell
In order to generate a mesh for unit cells with a simple cubic distribution of
spherical inclusions, relevant data have to be passed for the initialization of
a new object instance. For unit cells of the type under consideration, the
following parameters are possible:
#
radius: float (mandatory)
radius of the inclusions within the unit cell
#
distance: float (defining either distance or size is mandatory)
distance of the inclusions within the unit cell
-> if the distance is given, the cells size is calculated automatically
#
size: list/array (defining either distance or size is mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, (L_z)]
-> if the size is given, the inclusion distances are calculated automatically
(this allows more flexibility and unit cells with inclusion distributions
that are similar to the physical unit cell under consideration)
#
numberCells: list/array (optional)
array defining the number of cells in the 3 spatial axis directions
-> numberCells=[n_x, n_y, n_z]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, (O_z)]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "numberCells": [1,1,1], # generate 1 unit cell in every spatial direction
 "radius": 2, # set the inclusion radius to 2
 "inclusionType": "Sphere", # define inclusionType as "Sphere"
 "distance": 8, # set the inclusion distance to 8 and calculate the correspondig cell size
 "origin": [0, 0, 0], # set cell origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testCell=SimpleCubicCell(**initParameters)

Gmsh model generation
After all parameters for the unit cell are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For unit cells no additional options are required for the
inclusion placement. To this end, the command is simply:
#
testCell.createGmshModel()

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testCell.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
testCell.saveMesh("simpleCubicCell3DSphere.vtu")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
testCell.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, the API has to be finalized. This
can be achieved by calling the close() method of the model
testCell.close()

Result

If the mesh generation is successful, the result should look like this:

[image: ../_images/SimpleCubicCell3DSphere.png]
Since the inclusion is fully embedded in the surrounding matrix material,
the BoxWidget of the PyVista-based visualization tool is used to extract
the part of the mesh that can be seen in the image above.

Body-centered cubic unit cell with circular inclusions

This example shows the generation of a unit cell with a body-centered cubic
distribution of circular inclusions. The basic procedures of the model and
mesh generation are pointed out and the resulting mesh is visualized. For the
example, only the standard configuration is used. However, in order to show
all available options - user configurations are passed as dictionaries to the
individual classes and methods - the dictionaries containing the default values
are passed. This means that, if they were not passed, the resulting mesh would
be the same.

Code

Loading of the BodyCenteredCubicUnitCell class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class BodyCenteredCubicCell
from gmshModel.Model import BodyCenteredCubicCell

Initialization of the unit cell
In order to generate a mesh for unit cells with a body-centered cubic distribution
of circular inclusions, relevant data have to be passed for the initialization
of a new object instance. For unit cells of the type under consideration, the
following parameters are possible:
#
radius: float (mandatory)
radius of the inclusions within the unit cell
#
distance: float (defining either distance or size is mandatory)
distance of the inclusions within the unit cell
-> if the distance is given, the cells size is calculated automatically
#
size: list/array (defining either distance or size is mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, (L_z)]
-> if the size is given, the inclusion distances are calculated automatically
(this allows more flexibility and unit cells with inclusion distributions
that are similar to the physical unit cell under consideration)
#
numberCells: list/array (optional)
array defining the number of cells in the 3 spatial axis directions
-> numberCells=[n_x, n_y, n_z]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, O_z]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "numberCells": [3,3,1], # generate 3 unit cells in the in-plane direction and one along the third axis direction
 "radius": 2, # set the inclusion radius to 2
 "distance": 6, # set the inclusion distance to 6 and calculate the correspondig cell size
 "inclusionType": "Circle", # define inclusionType as "Circle"
 "origin": [10, 10, 0], # set cell origin to [10,10,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testCell=BodyCenteredCubicCell(**initParameters)

Gmsh model generation
After all parameters for the unit cell are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For unit cells no additional options are required for the
inclusion placement. To this end, the command is simply:
#
testCell.createGmshModel()

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testCell.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
testCell.saveMesh("bodyCenteredCubicCell2DCircle.msh")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
testCell.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, the API has to be finalized. This
can be achieved by calling the close() method of the model
testCell.close()

Result

If the mesh generation is successful, the result should look like this:

[image: ../_images/BodyCenteredCubicCell2DCircle.png]
The mesh refinement between close inclusions is visible: a closer look reveals
that indeed at least 3 elements between the inclusions are ensured.

Face-centered cubic unit cell with cylindrical inclusions

This example shows the generation of a unit cell with a face-centered cubic
distribution of cylindrical inclusions. The basic procedures of the model and
mesh generation are pointed out and the resulting mesh is visualized. For the
example, only the standard configuration is used. However, in order to show
all available options - user configurations are passed as dictionaries to the
individual classes and methods - the dictionaries containing the default values
are passed. This means that, if they were not passed, the resulting mesh would
be the same.

Code

Loading of the FaceCenteredCubicUnitCell class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class FaceCenteredCubicCell
from gmshModel.Model import FaceCenteredCubicCell

Initialization of the unit cell
In order to generate a mesh for unit cells with a face-centered cubic distribution
of cylindrical inclusions, relevant data have to be passed for the initialization
of a new object instance. For unit cells of the type under consideration, the
following parameters are possible:
#
radius: float (mandatory)
radius of the inclusions within the unit cell
#
distance: float (defining either distance or size is mandatory)
distance of the inclusions within the unit cell
-> if the distance is given, the cells size is calculated automatically
#
size: list/array (defining either distance or size is mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, (L_z)]
-> if the size is given, the inclusion distances are calculated automatically
(this allows more flexibility and unit cells with inclusion distributions
that are similar to the physical unit cell under consideration)
#
numberCells: list/array (optional)
array defining the number of cells in the 3 spatial axis directions
-> numberCells=[n_x, n_y, n_z]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, O_z]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "numberCells": [2,2,1], # generate 2 unit cells in the in-plane direction and one along the cylinder axis direction
 "radius": 2, # set the inclusion radius to 2
 "distance": 6, # set the inclusion distance to 8 and calculate the correspondig cell size
 "inclusionType": "Cylinder", # define inclusionType as "Cylinder"
 "inclusionAxis": [0,0,2], # define cylinders to be aligned with the z-axis and have a length of 2
 "origin": [0, 0, 0], # set cell origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testCell=FaceCenteredCubicCell(**initParameters)

Gmsh model generation
After all parameters for the unit cell are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For unit cells no additional options are required for the
inclusion placement. To this end, the command is simply:
#
testCell.createGmshModel()

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testCell.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
testCell.saveMesh("faceCenteredCubicCell3DCylinder.xdmf")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
testCell.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, the API has to be finalized. This
can be achieved by calling the close() method of the model
testCell.close()

Result

If the mesh generation is successful, the result should look like this:

[image: ../_images/FaceCenteredCubicCell3DCylinder.png]

Hexagonal unit cell with spherical inclusions

This example shows the generation of a unit cell with a hexagonal distribution
of spherical inclusions. The basic procedures of the model and mesh generation
are pointed out and the resulting mesh is visualized. For the example, only the
standard configuration is used. However, in order to show all available options -
user configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

Loading of the HexagonalUnitCell class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class HexagonalCell
from gmshModel.Model import HexagonalCell

Initialization of the unit cell
In order to generate a mesh for unit cells with a hexagonal distribution of
spherical inclusions, relevant data have to be passed for the initialization of
a new object instance. For unit cells of the type under consideration, the
following parameters are possible:
#
radius: float (mandatory)
radius of the inclusions within the unit cell
#
distance: float (defining either distance or size is mandatory)
distance of the inclusions within the unit cell
-> if the distance is given, the cells size is calculated automatically
#
size: list/array (defining either distance or size is mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, (L_z)]
-> if the size is given, the inclusion distances are calculated automatically
(this allows more flexibility and unit cells with inclusion distributions
that are similar to the physical unit cell under consideration)
#
numberCells: list/array (optional)
array defining the number of cells in the 3 spatial axis directions
-> numberCells=[n_x, n_y, n_z]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, (O_z)]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "numberCells": [1,1,1], # generate 1 unit cell in every spatial direction
 "radius": 2.5, # set the inclusion radius to 2.5
 "inclusionType": "Sphere", # define inclusionType as "Sphere"
 "size": [6, 6*3**(0.5), 6*(8/3)**(0.5)], # set cell size instead of distance
 "origin": [0, 0, 0], # set cell origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testCell=HexagonalCell(**initParameters)

Gmsh model generation
After all parameters for the unit cell are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For unit cells no additional options are required for the
inclusion placement. To this end, the command is simply:
#
testCell.createGmshModel()

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testCell.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
testCell.saveMesh("hexagonalCell3DSphere.feap")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
testCell.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, the API has to be finalized. This
can be achieved by calling the close() method of the model
testCell.close()

Result

If the mesh generation is successful, the result should look like this:

[image: ../_images/HexagonalCell3DSphere.png]
The left image shows that the distances between the individual inclusions are
equal. The right image shows the corresponding mesh with a slight refinement
between close inclusions.

Helical chain with circular inclusions

This example shows the mesh generation for a unit cell of a helical chain with
circular inclusions. The basic procedures of the model and mesh generation
are pointed out and the resulting mesh is visualized. For the example, only the
standard configuration is used. However, in order to show all available options -
user configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

load numpy
import numpy as np

Loading of the HelicalChain class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class HelicalChain
from gmshModel.Model import HelicalChain

Initialization of the unit cell
In order to generate a mesh for unit cells of a helical chain with circular
inclusions, relevant data have to be passed for the initialization of
a new object instance. For unit cells of the type under consideration, the
following parameters are possible:
#
inclusionRadius: float (mandatory)
radius of the inclusions within the unit cell
#
chainRadius: float (mandatory)
radius of the helical chain
#
theta: float (mandatory)
angle (radian) between neighboring inclusions of the helical chain
#
size: list/array (mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, (L_z)]
#
numberCells: list/array (optional)
array defining the number of cells in the 3 spatial axis directions
-> for two-dimensional problems, n_z is automatically set to 1
-> numberCells=[n_x, n_y, n_z]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
-> currently, only circular (2D) and spherical (3D) inclusions are supported
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, (O_z)]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "numberCells": [3,1,1], # generate 3 unit cells in the 1-direction
 "inclusionRadius": 1, # set the inclusion radius to 1
 "chainRadius": 0.8, # set the chain radius to 1.2
 "inclusionType": "Circle", # define inclusionType as "Sphere"
 "chainDirection": [0,1,0], # generate chain in 3-direction
 "theta": np.pi, # set angle between neighboring inclusions to 180 degrees (only plausible choice)
 "size": [12, 4, 0], # set cell size (resulting layer distance of 4/3)
 "origin": [0, 0, 0], # set cell origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testChain=HelicalChain(**initParameters)

Gmsh model generation
After all parameters for the chain are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For helical chains, no additional options are required for the
inclusion placement. To this end, the command is simply:
#
testChain.createGmshModel()

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testChain.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
testChain.saveMesh("helicalChain2DCircle.vtu")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
testChain.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, the API has to be finalized. This
can be achieved by calling the close() method of the model
testChain.close()

Result

If the mesh generation is successful, the result should look like this:

[image: ../_images/HelicalChain2DCircle.png]
In the image, 3 chains can be seen. The refinement between close inclusions
ensures at least 3 elements between them.

Helical chain with spherical inclusions

This example shows the mesh generation for a unit cell of a helical chain with
spherical inclusions. The basic procedures of the model and mesh generation
are pointed out and the resulting mesh is visualized. For the example, only the
standard configuration is used. However, in order to show all available options -
user configurations are passed as dictionaries to the individual classes and
methods - the dictionaries containing the default values are passed. This
means that, if they were not passed, the resulting mesh would be the same.

Code

load numpy
import numpy as np

Loading of the HelicalChain class
Before the model and mesh generation can start, the required class has to be
loaded. In this case it is the class HelicalChain
from gmshModel.Model import HelicalChain

Initialization of the unit cell
In order to generate a mesh for unit cells of a helical chain with spherical
inclusions, relevant data have to be passed for the initialization of
a new object instance. For unit cells of the type under consideration, the
following parameters are possible:
#
inclusionRadius: float (mandatory)
radius of the inclusions within the unit cell
#
chainRadius: float (mandatory)
radius of the helical chain
#
theta: float (mandatory)
angle (radian) between neighboring inclusions of the helical chain
#
size: list/array (mandatory)
array defining the size of the RVE in the individual directions
-> size=[L_x, L_y, (L_z)]
#
numberCells: list/array (optional)
array defining the number of cells in the 3 spatial axis directions
-> for two-dimensional problems, n_z is automatically set to 1
-> numberCells=[n_x, n_y, n_z]
#
inclusionType: string (mandatory)
string defining the type of inclusions within the RVE
-> currently, only circular (2D) and spherical (3D) inclusions are supported
#
origin: list/array (optional)
array defining the origin of the RVE
-> origin=[O_x, O_y, (O_z)]
#
periodicityFlags: list/array (optional)
array with flags (0/1) whether the current coordinate direction has to be
treated as periodic
periodicityFlags=[0/1, 0/1, 0/1]
#
domainGroup: string (optional)
string defining which group the geometric objects defining the domain belong
to (to reference this group within boolean operations)
#
inclusionGroup: string (optional)
string defining which group the geometric objects defining the inclusions
belong to (to reference this group within boolean operations)
#
gmshConfigChanges: dict (optional)
dictionary for user updates of the default Gmsh configuration
#
initParameters={ # save all possible parameters in one dict to facilitate the method call
 "numberCells": [1,1,2], # generate 1 unit cell in axis directions perpendicular to the chain, generate 2 chains in chain direction
 "inclusionRadius": 1, # set the inclusion radius to 1
 "chainRadius": 1.25, # set the chain radius to 1.25
 "inclusionType": "Sphere", # define inclusionType as "Sphere"
 "chainDirection": [0,0,1], # generate chain in 3-direction
 "theta": np.pi/3, # set angle between neighboring inclusions to 60 degrees
 "size": [10, 10, 21], # set cell size (resulting layer distance of 1.75)
 "origin": [0, 0, 0], # set cell origin to [0,0,0]
 "periodicityFlags": [1, 1, 1], # define all axis directions as periodic
 "domainGroup": "domain", # use "domain" as name for the domainGroup
 "inclusionGroup": "inclusions", # use "inclusions" as name for the inclusionGroup
 "gmshConfigChanges": {"General.Terminal": 0, # deactivate console output by default (only activated for mesh generation)
 "Mesh.CharacteristicLengthExtendFromBoundary": 0, # do not calculate mesh sizes from the boundary by default (since mesh sizes are specified by fields)
 }
}
testChain=HelicalChain(**initParameters)

Gmsh model generation
After all parameters for the chain are set, the Gmsh model can be generated.
This process involves the definition of geometric objects, their combination
to more complex shapes using boolean operations and the definition of physical
groups, i.e. groups of elements that belong to the same material or part of
the boundary. For helical chains, no additional options are required for the
inclusion placement. To this end, the command is simply:
#
testChain.createGmshModel()

Gmsh mesh creation
After the model has been created using the Gmsh-Python-API, the meshing
can be performed. To this end, refinement fields defining the mesh sizes
within the model have to be calculated and added to the Gmsh model. Once, the
mesh sizes are specified,the mesh can be generated. Available parameters are:
#
threads: int
number of threads to use for the meshing procedure
refinementOptions: dict (optional)
dictionary containing user updates for the refinement field calculation
#
meshingParameters={ # save all possible parameters in one dict to facilitate the method call
 "threads": None, # do not activate parallel meshing by default
 "refinementOptions": {"maxMeshSize": "auto", # automatically calculate maximum mesh size with built-in method
 "inclusionRefinement": True, # flag to indicate active refinement of inclusions
 "interInclusionRefinement": True, # flag to indicate active refinement of space between inclusions (inter-inclusion refinement)
 "elementsPerCircumference": 18, # use 18 elements per inclusion circumference for inclusion refinement
 "elementsBetweenInclusions": 3, # ensure 3 elements between close inclusions for inter-inclusion refinement
 "inclusionRefinementWidth": 3, # use a relative (to inclusion radius) refinement width of 3 for inclusion refinement
 "transitionElements": "auto", # automatically calculate number of transitioning elements (elements in which tanh function jumps from h_min to h_max) for inter-inclusion refinement
 "aspectRatio": 1.5 # aspect ratio for inter-inclusion refinement: ratio of refinement in inclusion distance and perpendicular directions
 }
}
testChain.createMesh(**meshingParameters)

Save resulting mesh to file
The mesh is generated and can be saved to a file. To this end, only the file
name - possibly containing a directory and the extension of the wanted mesh
format - has to be passed. The package supports all mesh file formats that are
supported by meshio. If no filename is passed, meshes are stored to the current
directory using the unique model name and the default mesh file format (.msh)
testChain.saveMesh("helicalChain3DSphere.xdmf")

Show resulting mesh
To check the generated mesh, the result can also be visualized using built-in
methods.
testChain.visualizeMesh()

Close Gmsh model
For a proper closing of the Gmsh-Python-API, the API has to be finalized. This
can be achieved by calling the close() method of the model
testChain.close()

Result

If the mesh generation is successful, the result should look like this:

[image: ../_images/HelicalChain3DSphere.png]
The left image shows the structure of the helical chain. In the right image,
an extraction of the mesh is shown to illustrate the mesh quality resulting from
the default refinement options.

API Reference

The core functionality of GmshModel is the mesh generation for complex models
using Gmsh and the Gmsh-Python-API. The creation of such complex models, often
requires methods for the geometry generation. To this end, basic geometric objects
and helper methods for, e.g., distance calculations are provided within the
Geometry module of GmshModel: using boolean operations for
groups of basic geometric objects, complex models can be defined step by step.
An extension of the modules will help to broaden the range of available models.

After the geometry is defined, it has to be transferred into a Gmsh model: all
geometric objects are translated to their Gmsh representations, boolean
operations are performed and physical groups are added to the model. Within
the Model module of Model, predefined models can be found.
Since, so far, the focus of GmshModel was on mesh models for representative
volume elements with multiple, randomly placed inclusions, especially those models
are already defined in GmshModel. However, since the GenericModel defines all required
methods for the model generation, the basic tasks for the development of a new
model are the definitions of required geometric objects and their arrangement within
the model, of boolean operations and physical groups to be performed/added in Gmsh
and of refinement information for an auomated mesh size computation.

Finally, basic GUIs for the geometry and mesh visualization are defined within
the Visualization module while an extension of the mesh conversion capabilities
of meshio for simulations using FEAP is defined within the MeshExport module.

	Model
	GenericModel

	GenericRVE

	InclusionRVE

	RandomInclusionRVE

	GenericUnitCell

	SimpleCubicCell

	BodyCenteredCubicCell

	FaceCenteredCubicCell

	HexagonalCell

	HelicalChain

	Geometry
	GeometricObjects

	DistanceCalculations

	Visualization
	GeometryVisualization

	MeshVisualization

	MeshExport
	MeshExport

Model

The Model module provides defined model class definitions for GmshModel:
starting from the GenericModel class, where all basic attributes and
method for every GmshModel are defined, more specialized models are defined as
children of GenericModel

	GenericModel

	GenericRVE

	InclusionRVE

	RandomInclusionRVE

	GenericUnitCell

	SimpleCubicCell

	BodyCenteredCubicCell

	FaceCenteredCubicCell

	HexagonalCell

	HelicalChain

GenericModel

The GenericModel is the base class for other, more specific classes which aim
to mesh models using the Gmsh- Python-API. In addition to the methods defined
within the Gmsh-Python-API, this class provides methods for all basic steps of
a model generation using Gmsh: some of these methods are only placeholders here
and - if required - have to be specified/overwritten for the more specialized
models.

Class Definition

GenericRVE

The GenericRVE provides a class definition for an RVE generation using Python and
Gmsh. The class inherits from the GenericModel class and extends it in order
order to handle the problems that are connected with the generation of models
with periodicity constraints.

Currently, the class is restricted to RVEs with rectangular (2D)/ box-shaped
(3D) domains (explicitly assumed within the setupPeriodicity() method).

Class Definition

InclusionRVE

The InclusionRVE provides a class definition for a generation of RVEs with inclusions
using Python and Gmsh. The class inherits from the GenericRVE class and extends
it in order to handle distance and refinement calculations

Currently, the class is restricted to RVEs with rectangular (2D)/ box-shaped
(3D) domains (explicitly assumed within the setupPeriodicity() method) which
comprise inclusions that are all of the same type (explicitly assumed by using
one inclusionInformation array and one inclusionAxis variable).

Class Definition

RandomInclusionRVE

The RandomInclusionRVE class provides a class definition for a generation of RVEs
with randomly placed inclusions. The class inherits from the InclusionRVE class
and extends it in order to specify the remaining placeholder methods of
the GenericModel. Methods to create the geometry, define refinement information
and additional information for required boolean operations and physical groups
are part of the class.

Class Definition

GenericUnitCell

The GenericUnitCell class provides required information for inclusion-based unit
cells. It inherits from the InclusionRVE class and extends its attributes and
methods to handle the boolean operations and the definition of physical groups.

All unit cell allow to create “real” unit cells by passing the inclusion
distance to the classes initialization method. If the cells size is
specified instead, the distance is calculated automatically: this allows for
unit cells with an inclusion distribution that is close to physical unit
cells but gives more flexibility in their generation.

Class Definition

SimpleCubicCell

The SimpleCubicCell provides a class definition for a generation of unit cells
with a simple cubic distribution of the inclusions. The class inherits from the
GenericUnitCell class and extends it in order to specify the remaining
placeholder methods of the GenericModel. Especially, methods to determine the
cells size and place the inclusions are provided.

Class Definition

BodyCenteredCubicCell

The BodyCenteredCubicCell provides a class definition for a generation of unit cells
with a body-centered cubic distribution of the inclusions. The class inherits from the
GenericUnitCell class and extends it in order to specify the remaining
placeholder methods of the GenericModel. Especially, methods to determine the
cells size and place the inclusions are provided.

Class Definition

FaceCenteredCubicCell

The FaceCenteredCubicCell provides a class definition for a generation of unit cells
with a face-centered cubic distribution of the inclusions. The class inherits from the
GenericUnitCell class and extends it in order to specify the remaining
placeholder methods of the GenericModel. Especially, methods to determine the
cells size and place the inclusions are provided.

Class Definition

HexagonalCell

The HexagonalCell provides a class definition for a generation of unit cells
with a hexagonal cubic distribution of the inclusions. The class inherits from
the GenericUnitCell class and extends it in order to specify the remaining
placeholder methods of the GenericModel. Especially, methods to determine the
cells size and place the inclusions are provided.

Class Definition

HelicalChain

The HelicalChain class provides a class definition for a generation of unit
cells with inclusions distributed in a helical chain. The class inherits from
the InclusionRVE class and extends it in order to specify the remaining
placeholder methods of the GenericModel.

Currently, the class is restricted to circular and spherical inclusions which
are arranged in a helical chain that is parallel to one of the coordinate axes.

Class Definition

Geometry

The Geometry model provides basic geometric objects and helper methods for the
model geometry generation. An extension of geometric objects will help to extend
the class of geometries that can be generated with GmshModel.

	GeometricObjects

	DistanceCalculations

GeometricObjects

Within GeometricObjects classes for different geometric objects used in the
GmshModel are defined. The geometric objects are used within the geometry
generation to create Gmsh model from basic geometry entities.

Class Definitions

GeometricObject

Box

Rectangle

Sphere

Cylinder

Circle

DistanceCalculations

This file provides methods for distance calculations

Methods

Visualization

To see, if the generated mesh matches the own requirements, a basic visualization
tool using pyvista [https://www.pyvista.org/] has been defined in the MeshVisualization
class. If a mesh generation does not work and the pythonocc [https://github.com/tpaviot/pythonocc-core/]
package is available, the geometry of the Gmsh model can also be visualized using
the GeometryVisualization class.

	GeometryVisualization

	MeshVisualization

GeometryVisualization

The GeometryVisualization provides the class definition for the geometry
visualization of the model. It is based on the pythonocc library and provides
simple methods for the visualization.

Class Definition

MeshVisualization

The MeshVisualization provides the class definition for the mesh visualization of a Gmsh
model. It is based on the pyvista and vtk libraries und implements additional
features for the mesh visualization.

Class Definition

MeshExport

This module provides additional methods for mesh export formats that cannot be
handled using meshio. At the moment, only a special export method for FEAP is
implemented - other export formats can be added here, if required.

	MeshExport

MeshExport

The MeshExport module provides a simple mesh export feature for FEAP by directly
using the information available from the model without involving meshio.

Module Functions

Index

 _images/SimpleCubicCell3DSphere.png

_images/VisualizationBasic.png
R ?"%'ﬁa‘&'ﬁ
N ‘i;z'@fim

L
RNE

Nyt

| Mesh Visualization

Iy
Eﬁi&? A
i

14’5!;’1’1’4

A

i)

aY e
v
i
s

N 4'“""'
O T

5

_images/RandomInclusions3DCylinder.png
uwz»s.u

AN
DT

b
VIS

P

N

i

_images/RandomInclusions3DSphere.png
Wi
ﬂﬂv r.\(
o &

_static/comment-bright.png

_images/VisualizationMenu.png
GmshModel Mesh Visualization

Min

1.75

Max

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/RVE200SpheresGeo.png

_images/RVE200SpheresMesh.png

_images/HelicalChain3DSphere.png

_images/HexagonalCell3DSphere.png

_images/RandomInclusions2DCircle.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 GmshModel

_images/FaceCenteredCubicCell3DCylinder.png

_static/file.png

_images/HelicalChain2DCircle.png

_static/minus.png

_static/down.png

_images/BodyCenteredCubicCell2DCircle.png

_static/up-pressed.png

_static/up.png

_static/plus.png

